Abdelgaber, N., & Nikolopoulos, C. (2020). Overview on quantum computing and its applications in artificial intelligence. 2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 198-199.
Adi, E., Anwar, A., Baig, Z., & Zeadally, S. (2020). Machine learning and data analytics for the IoT. Neural Computing and Applications, 32, 16205-16233.
Agbehadji, I. E., Awuzie, B. O., Ngowi, A. B., & Millham, R. C. (2020). Review of big data analytics, artificial intelligence and nature-inspired computing models towards accurate detection of COVID-19 pandemic cases and contact tracing. International Journal of Environmental Research and Public Health, 17(15), 5330.
Aggarwal, P., & McGill, A. L. (2007). Is that car smiling at me? Schema congruity as a basis for evaluating anthropomorphized products. Journal of Consumer Research, 34(4), 468-479.
Agrawal R., Gehrke J., Gunopulos D., & Raghavan P., (1994). Fast algorithms for mining association rules. Proceedings of the International Joint Conference on Very Large Data Bases, Santiago Chile, 1215, 487–499.
Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, 207-216).
Agrawal, D., & Schorling, C. (1996). Market share forecasting: An empirical comparison of artificial neural networks and multinomial logit model. Journal of Retailing, 72(4), 383–408.
Ali, M.J. & Djalilian, A. (2023). Readership awareness series–paper 4: Chatbots and ChatGPTethical considerations in scientific publications. Seminars in Ophthalmology, 38(5), 403-404.
Ameen, N., Tarhini, A., Shah, M. H., Madichie, N., Paul, J., & Choudrie, J. (2020). Keeping customers’ data secure: A cross-cultural study of cybersecurity compliance among the GenMobile workforce. Computers in Human Behavior, 114, 106531.
Amit, D. J., Gutfreund, H., & Sompolinsky, H. (1985). Spin-glass models of neural networks. Physical Review A, 32(2), 1007.
Analytic Partners. (2023, Q3). Generative AI in marketing measurement & optimization. Analytic Partners.
Ansari, A., & Riasi, A. (2016). Modelling and evaluating customer loyalty using neural networks: Evidence from startup insurance companies. Future Business Journal, 2(1), 15–30.
Anzai, Y. (2012). Pattern recognition and machine learning. Academic Press, Inc.
Araujo, T., Copulsky, J. R., Hayes, J. L., Kim, S. J., & Srivastava, J. (2020). From Purchasing Exposure to Fostering Engagement: Brand-Consumer Experiences in the Emerging Computational Advertising Landscape. Journal of Advertising, 49(4), 428–445.
ARF. (2023, March). ARF immersive advertising study. ARF.
ARF. (2023, July). ARF Attention Measurement Validation Initiative: Literature review. ARF.
ARF. (2023, September). ARF Attention Measurement Validation Initiative: Phase 1. ARF.
Arora, A. (2023, July). Moravec’s paradox and the fear of job automation in health care. The Lancet.
Arora, N., Dreze, X., Ghose, A., Hess, J. D., Iyengar, R., Jing, B., … & Zhang, Z. J. (2008). Putting one-to one marketing to work: Personalization, customization, and choice. Marketing Letters, 19, 305-321.
Athaluri, S. A., Manthena, S. V., Kesapragada, V. K. M., Yarlagadda, V., Dave, T., & Duddumpudi, R. T. S. (2023). Exploring the boundaries of reality: investigating the phenomenon of artificial intelligence hallucination in scientific writing through ChatGPT references. Cureus, 15(4), e37432.
Bakpayev, M., Baek, T. H., van Esch, P., & Yoon, S. (2020). Programmatic creative: AI can think but it cannot feel. Australasian Marketing Journal, 30(1), 90–95.
Ballestar, M. T., Grau-Carles, P., & Sainz, J. (2019). Predicting customer quality in e- commerce social networks: A machine learning approach. Review of Managerial Science, 13(3), 589–603.
Baltrušaitis, T., Robinson, P., & Morency, L. P. (2016). Openface: An open source facial behavior analysis toolkit. 2016 IEEE winter conference on applications of computer vision (WACV), 1-10.
Bandgar, S. (2021, Oct). Support Vector Machine. Medium.
Baumann, C., Elliott, G., & Burton, S. (2012). Modeling customer satisfaction and loyalty: Survey data versus data mining. Journal of Services Marketing, 26(3), 148–157.
Bayrak Meydanoğlu, E. S., Çilingirtürk, A. M., Öztürk, R., & Klein, M. (2020). An Empirical Cross Country Study On Consumers’ Attitude Towards Augmented Reality Advertising. Business and Management Studies: An International Journal, 8(2), 1424-1454.
Bejou, D., Wray, B., & Ingram, T. N. (1996). Determinants of relationship quality: An artificial neural network analysis. Journal of Business Research, 36(2), 137–143.
Belanche D., Casaló, L.V. & Flavián, C. (2019). Artificial Intelligence in Fintech: Understanding Robo Advisors Adoption Among Customers. Industrial Management and Data Systems, 119(7), 1411-1430.
Belk, R. (2016). Understanding the robot: Comments on Goudey and Bonnin (2016). Recherche et Applications en Marketing (English Edition), 31(4), 83-90.
Bock, D. E., Wolter, J. S., & Ferrell, O. C. (2020). Artificial intelligence: disrupting what we know about services. Journal of Services Marketing, 34(3), 317-334.
Boddington, P. (2017). Towards a code of ethics for artificial intelligence. Springer International Publishing.
Boerman, S. C., & Smit, E. G., (2023) Advertising and privacy: an overview of past research and a research agenda, International Journal of Advertising, 42(1), 60-68.
Bohr, A., & Memarzadeh, K. (2020) The rise of artificial intelligence in healthcare applications. In Artificial intelligence in healthcare Academic Press, 25-60.
Bogue, R. (2014). The role of artificial intelligence in robotics. Industrial Robot: An International Journal, 41(2), 119-123.
Bostrom, N., & Yudkowsky, E. (2018). The ethics of artificial intelligence. In Artificial intelligence safety and security (pp. 57-69). Chapman and Hall/CRC.
Bova, F., Goldfarb, A., & Melko, R. G. (2021). Commercial applications of quantum computing. EPJ Quantum Technology, 8(1), 2.
Bragazzi, N. L., Dai, H., Damiani, G., Behzadifar, M., Martini, M., & Wu, J. (2020). How big data and artificial intelligence can help better manage the COVID-19 pandemic. International Journal of Environmental Research and Public Health, 17(9), 3176.
Brand, J., Israeli, A., & Ngwe, D. (2023). Using GPT for market research. Available at SSRN 4395751.
Briggs, C., & Briggs, R. (2024). The AI Conundrum: Harnessing the Power of AI for Your Organization Profitably and Safely. MIT Press.
Brock, D. C. (2018). Learning from Artificial Intelligence’s Previous Awakenings: The History of Expert Systems. AI Magazine, 39(3), 3-15.
Brossard, M., Gatto, G., Gentile, A., Merle, T., and Wlezien, C. (2020, Feb). How generative design could reshape the future of product development. McKinsey & Company.
Buchanan, B. G. (2005). A (very) brief history of artificial intelligence. AI Magazine, 26(4), 53-53.
Butterworth, M. (2018). The ICO and artificial intelligence: The role of fairness in the GDPR framework. Computer Law & Security Review, 34(2), 257-268.
Calvano, E., Calzolari, G., Denicolò, V. & Pastorello, S. (2019). Algorithmic pricing what implications for competition policy? Review of Industrial Organization, 55(1), 155-171.
Campbell, M. (2023, March). Integrating AI into market research. ResearchWorld.
Campbell, C., Plangger, K., Sands, S., Kietzmann, J., & Bates, K. (2022). How deepfakes and artificial intelligence could reshape the advertising industry: The coming reality of AI fakes and their potential impact on consumer behavior. Journal of Advertising Research, 62(3), 241-251.
Cao, L. (2017). Data science: A comprehensive overview. ACM Computing Surveys (CSUR), 50(3), 43.
Carbonneau, R., Laframboise, K., & Vahidov, R. (2008). Application of machine learning techniques for supply chain demand forecasting. European Journal of Operational Research, 184, 1140–1154.
Casabayó, M., Agell, N., Aguado, J. C. (2004). Using AI Techniques in the Grocery Industry: Identifying the Customers Most Likely to Defect. International Review of Retail, Distribution and Consumer Research, 14(3), 295-308.
Cascio, R., Mariadoss, B. J., & Mouri, N. (2010). The impact of management commitment alignment on salespersons’ adoption of sales force automation technologies: An empirical investigation. Industrial Marketing Management, 39(7), 1088–1096.
Chan, S. L., & Ip, W. H. (2011). A Dynamic Decision Support System to Predict the Value of Customer for New Product Development. Decision Support Systems, 52(1), 178-188.
Chen, G., Xie, P., Dong, J., & Wang, T. (2019). Understanding Programmatic Creative: The Role of AI. Journal of Advertising, 48(4), 347–355.
Cherviakova, V., & Cherviakova, T. (2018). Value Opportunities for Automotive Manufacturers in Conditions of Digital Transformation of the Automotive Industry. Journal of Applied Economic Sciences, 13(8), 2351-2362.
Chica, M., Cordón, Ó., Damas, S., Iglesias, V., & Mingot, J. (2016). Identimod: Modeling and managing brand value using soft computing. Decision Support Systems, 89, 41-55.
Chiu, C. C., Sainath, T. N., Wu, Y., Prabhavalkar, R., Nguyen, P., Chen, Z., Kannan, A., Weiss, R. J., Rao, K., & Goninam, E. (2018). State-of-the-art speech recognition with sequence-tosequence models. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4774–4778.
Choi, E. P. H., Lee, J. J., Ho, M. H., Kwok, J. Y. Y., & Lok, K. Y. W. (2023). Chatting or cheating? The impacts of ChatGPT and other artificial intelligence language models on nurse education. Nurse Education Today, 125, 105796-105796.
Choi, Y. S., & Yu, S. Y. (2019). A Study on the Causal Relationship Between Attributes of VR Ad and Advertising Effectiveness: Mediating Effect of the Consumer’s Innovation. Journal of Digital Convergence, 17(2), 37-45.
Chong, A. Y. L., Li, B., Ngai, E. W., Ch’ng, E., & Lee, F. (2016). Predicting online product sales via online reviews, sentiments, and promotion strategies. International Journal of Operations & Production Management, 36(4), 358–383.
Chui, M., Yee, L., Hall, B., Singla, A., & Sukharevsky, A. (2023, August 1). The state of AI in 2023: Generative AI’s breakout year. McKinsey.
Coffee, P. (2023, December). An Anticipated Wave of AI Specialist Jobs Has Yet to Arrive. The Wall Street Journal.
Coffin, J. (2022). Asking Questions of AI Advertising: A Maieutic Approach. Journal of Advertising, 51(5), 608–623.
Coldewey, D., & Lardinois, F. (2023, Feb). AI is eating itself: Bing’s AI quotes COVID disinfo sourced from ChatGPT. TechCrunch+.
Cooke, M., & Passingham, J. (2022.) Do androids dream of electric research? WARC.
Cunningham, P., Cord, M., & Delany, S. J. (2008). Supervised learning. In Machine learning techniques for multimedia: case studies on organization and retrieval (pp. 21-49). Berlin, Heidelberg: Springer Berlin Heidelberg.
De Cicco, R., Silva, S. & Alparone, F. (2020). Millennials’ attitude toward chatbots: An experimental study in a social relationship perspective. International Journal of Retail and Distribution Management, available online ahead of print.
DeJong, G., & Mooney, R. (1986). Explanation-based learning: An alternative view. Machine learning, 1, 145-176.
Deng, L., & Liu, Y. (Eds.). (2018). Deep learning in natural language processing. Berlin: Springer.
Deng, S., Tan, C.-W., Wang, W., & Pan, Y. (2019). Smart Generation System of Personalized Advertising Copy and Its Application to Advertising Practice and Research. Journal of Advertising, 48(4), 356–365.
Devagiri, J. S., Paheding, S., Niyaz, Q., Yang, X., & Smith, S. (2022). Augmented Reality and Artificial Intelligence in industry: Trends, tools, and future challenges. Expert Systems with Applications, 118002.
Deveau, R., Griffin, S. J., & Reis, S. (2023, May). AI-powered marketing and sales reach new heights with generative AI. McKinsey.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
D’Haen, J., & Van den Poel, D. (2013). Model-supported business-to-business prospect prediction based on an iterative customer acquisition framework. Industrial Marketing Management, 42(4), 544-551.
Diaz, J. (2017). How marketers are using machine learning to cross-sell and upsell. Principa
Dignum, V. (2018). Ethics in artificial intelligence: introduction to the special issue. Ethics Inf Technol 20, 1–3.
Donthu, N., & Gustafsson, A. (2020). Effects of COVID-19 on business and research. Journal of Business Research, 117, 284-289.
Du, X., Jiao, J., & Tseng, M. M. (2003). Identifying customer need patterns for customization and personalization. Integrated Manufacturing Systems, 14(5), 387-396.
European Commission. (2021). EU-US Trade and Technology Council Statement 2021. EC.
Erdem, E., & Sidlova, V. (2023, November). The future of generative AI in advertising: Efficiency without effectiveness? Kantar.
Erevelles, S., Fukawa, N., & Swayne, L. (2016). Big Data consumer analytics and the transformation of marketing. Journal of Business Research, 69(2), 897–904.
Etzioni, A., & Etzioni, O. (2017). Incorporating ethics into artificial intelligence. The Journal of Ethics, 21(4), 403-418.
Farrokhnia, M., Banihashem, S. K., Noroozi, O., & Wals, A. (2023). A SWOT analysis of ChatGPT: Implications for educational practice and research. Innovations in Education and Teaching International, 1-15.
Fatima, M., & Pasha, M. (2017). Survey of machine learning algorithms for disease diagnostic. Journal of Intelligent Learning Systems and Applications, 9(01), 1-16.
Firican, G. The history of big data. Lights On Data.
Fish, K. E., Barnes, J. H., & Aiken, M. W. (1995). Artificial neural networks: a new methodology for industrial market segmentation. Industrial Marketing Management, 24(5), 431-438.
Flaherty, K. E., Lassk, F., Lee, N., Marshall, G. W., Moncrief, W. C., Mulki, J. P., & Pullins, E. B. (2018). Sales scholarship: honoring the past and defining the future (Key takeaways from the 2018 American Marketing Association Faculty Consortium: New Horizons in Selling and Sales Management). Journal of Personal Selling & Sales Management, 38(4), 413-421.
Floridi, L. & Cowls, J. (2019). A Unified Framework of Five Principles for AI in Society. Harvard Data Science Review, 1(1).
Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin, R., Pagallo, U., Rossi, F., Schafer, B., Valcke, P., & Vayena, E. (2018). AI4People — An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles and Recommendations. (AI4People).
Fong, H., Kumar, V., & Sudhir, K. (2021). A theory-based interpretable deep learning architecture for music emotion. Available at SSRN 4025386.
Ford, J., Jain, V., Wadhwani, K., & Gupta, D. G. (2023). AI advertising: An overview and guidelines. Journal of Business Research, 166, 114124.
Fried, I. (2023 Feb). ChatGPT sparks surge of AI detection tools. Axios.
Fujiyoshi, H., Hirakawa, T., & Yamashita, T. (2019). Deep learning-based image recognition for autonomous driving. IATSS Research, 43(4), 244–252.
Frąckiewicz, M. (2023). The Evolution of AI: Tracing the History and Progress of Decision Trees in Artificial Intelligence. Artificial Intelligence, TS2 Space.
Gardner, E. (1988). The space of interactions in neural network models. Journal of Physics A: Mathematical and General, 21(1), 257.
Gardner, E. (1987). Maximum storage capacity in neural networks. Europhysics Letters, 4(4), 481.
Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media, Inc.
Ghahramani, Z. (2003). Unsupervised learning. In Summer school on machine learning (pp. 72-112). Berlin, Heidelberg: Springer Berlin Heidelberg.
Girotra, K., Meincke, L., Terwiesch, C., & Ulrich, K. T. (2023). Ideas are dimes a dozen: Large language models for idea generation in innovation. Available at SSRN 4526071.
Goebel, R., Chander, A., Holzinger, K., Lecue, F., Akata, Z., Stumpf, S., … & Holzinger, A. (2018). Explainable AI: the new 42?. Goebel, R. et al. (2018). Explainable AI: The New 42?. In: Holzinger, A., Kieseberg, P., Tjoa, A., Weippl, E. (eds) Machine Learning and Knowledge Extraction. CD-MAKE 2018. Lecture Notes in Computer Science(), vol 11015. Springer, Cham. https://doi.org/10.1007/978-3-319-99740-7_21
Goertzel, B. (2014). Artificial general intelligence: concept, state of the art, and future prospects. Journal of Artificial General Intelligence, 5(1), 1.
Goodell, J. W., Kumar, S., Lim, W. M., & Pattnaik, D. (2021). Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis. Journal of Behavioral and Experimental Finance, 32, 100577.
Goldstein, I., & Papert, S. (1977). Artificial Intelligence, Language and the Study of Knowledge. Cognitive Science, 1(1).
Gong, J., Abhishek, V., & Li, B. (2018). Examining the Impact of Keyword Ambiguity on Search Advertising Performance. MIS Quarterly, 42(3), 805-A14.
Gozalo-Brizuela, R., & Garrido-Merchan, E. C. (2023). ChatGPT is not all you need. A State of the Art Review of large Generative AI models. arXiv preprint arXiv:2301.04655.
Gralpois, B. (2023, March). The future of AI in advertising and client/agency relationships. ANA.
Grewal, D., Hulland, J., Kopalle, P. K., & Karahanna, E. (2020). The future of technology and marketing: a multidisciplinary perspective. Journal of the Academy of Marketing Science, 48, 1-8.
Griffith, D., Kiessling, T. & Dabić, M. (2012). Aligning strategic orientation with local market conditions: Implications for subsidiary knowledge management. International Marketing Review, 29(4), 379-402.
Grudin, J., & Jacques, R. (2019). Chatbots, humbots, and the quest for artificial general intelligence. Proceedings of the 2019 CHI conference on human factors in computing systems, 1-11.
Guitart, I. A., Hervet, G., & Gelper, S. (2020). Competitive advertising strategies for programmatic television. J. of the Acad. Mark. Sci., 48(4), 753–775.
Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., & Yang, G. Z. (2019). XAI—Explainable artificial intelligence. Science Robotics, 4(37), eaay7120.
Ha, K., Cho, S., & MacLachlan, D. (2005). Response models based on bagging neural networks. Journal of Interactive Marketing, 19(1), 17-30.
Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119-132.
Hamid, S. A., & Iqbal, Z. (2004). Using neural networks for forecasting volatility of S&P 500 Index futures prices. Journal of Business Research, 57(10), 1116–1125.
Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts and techniques. Morgan Kaufmann.
Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. ACM SIGMOND Record, 29(2), 1-12.
Hardcastle, K. (2023, November). How generative AI is redefining the game for marketers, and what can they do about it? WARC.
Haryanto, J. O., Silva, M., & Moutinho, L. (2015). Neural network approach to understanding the children’s market. European Journal of Marketing, 49(3–4), 372–397.
Hassani, H., & Silva, E. S. (2023). The role of ChatGPT in data science: how ai-assisted conversational interfaces are revolutionizing the field. Big Data and Cognitive Computing, 7(2), 62.
Hayes, J. L., Britt, B. C., Evans, W., Rush, S. W., Towery, N. A., & Adamson, A. C. (2021). Can social media listening platforms’ artificial intelligence be trusted? Examining the accuracy of Crimson Hexagon’s (now Brandwatch Consumer Research’s) AI-Driven analyses. Journal of Advertising, 50(1), 81-91.
Henke, N.; Bughin, J.; Chui, M.; Manyika, J.; Saleh, T.;Wiseman, B.; Sethupathy, G. (2016, Dec). The Age of Analytics: Competing in a Data-Driven World. McKinsey Global Institute.
Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554.
Ho, C., Mu, J., Timpone, R., & Souchal, C. (2022, July). Beyond the hype- Innovation predictions in the era of machine learning. Ipsos.
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554-2558.
Hsu, T., & Lu, Y. (2023, July). A blessing and a boogeyman: Advertisers warily embrace A.I. The New York Times. Huang, MH., & Rust, R.T
Huang, MH., & Rust, R.T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49, 30–50.
Huang, M. H., & Rust, R. T. (2020). Engaged to a Robot? The Role of AI in Service. Journal of Service Research, 24(1).
Huang, M. H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155-172.
Hughes-Castleberry, K. (2023, January). Inside Quantum Technology’s Inside Scoop: Quantum and Advertising. Inside Quantum Technology News.
Huh, J., Kim, H., Rath, B., Lu, X., & Srivastava, J. (2020). You reap where you sow: A trust-based approach to initial seeding for viral advertising. International Journal of Advertising, 39(7), 963–989.
Huff, E., & Bonde, A. (2022, May). AI meets consumer insights: Welcome to the era of AICI. Ipsos.
IAB AI Standards Working Group. (2021, March). Artificial intelligence use cases and best practices for marketing. IAB.
Ipsos (2023, July). What the Future. Intelligence.
Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237-285.
Khan, R. A., Jawaid, M., Khan, A. R., & Sajjad, M. (2023). ChatGPT-Reshaping medical education and clinical management. Pakistan Journal of Medical Sciences, 39(2), 605 – 607.
Kim, Y., Street, W. N., Russell, G. J., & Menczer, F. (2005). Customer targeting: A neural network approach guided by genetic algorithms. Management Science, 51(2), 264–276.
Kitsopoulou, M., & Lappas, G. (2023, November). AR/VR technologies in advertising: A scoping review on empirical studies on the effectiveness of AR/VR in advertising. In AIP Conference Proceedings (Vol. 2909, No. 1). AIP Publishing.
Kerwin, A. M. (2023, Oct). Spotlight US: How US marketers are starting to use Gen AI. WARC.
Kibria, M. G., Nguyen, K., Villardi, G. P., Zhao, O., Ishizu, K., & Kojima, F. (2018). Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks. IEEE access, 6, 32328-32338.
Kietzmann, J., Paschen, J., & Treen, E. (2018). Artificial intelligence in advertising: How marketers can leverage artificial intelligence along the consumer journey. Journal of Advertising Research, 58(3), 263-267.
Kim, Y., & Street, W. N. (2004). An Intelligent System for Customer Targeting: A Data Mining Approach. Decision Support Systems, 37(2), 215-228.
Kitchens, B., Dobolyi, D., Li, J., & Abbasi, A. (2018). Advanced customer analytics: Strategic value through integration of relationship-oriented big data. Journal of Management Information Systems, 35(2), 540–574.
Kodinariya, T. M., & Makwana, P. R. (2013). Review on determining number of Cluster in K-Means Clustering. International Journal, 1(6), 90-95.
Kolbjørnsrud, V., Amico, R., & Thomas, R. J. (2017). Partnering with AI: how organizations can win over skeptical managers. Strategy & Leadership, 45(1), 37-43.
Kononova, A., Kim, W., Joo, E., & Lynch, K. (2020). Click, click, ad: The proportion of relevant (vs. irrelevant) ads matters when advertising within paginated online content. International Journal of Advertising, 39(7), 1031–1058.
Korganbekova, M., and C. Zuber (2023). Balancing User Privacy and Personalization. Work In Progress.
Korteling, J. H., van de Boer-Visschedijk, G. C., Blankendaal, R. A., Boonekamp, R. C., & Eikelboom, A. R. (2021). Human-versus artificial intelligence. Frontiers in Artificial Intelligence, 4, 622364.
Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine learning: a review of classification and combining techniques. Artificial Intelligence Review, 26, 159-190.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25.
Kuligowski, K. (2023, October). Facial Recognition Advertising: The New Way to Target Ads to Consumers. Business News Daily.
Kumar, Y., Koul, A., Singla, R., & Ijaz, M. F. (2022). Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. Journal of Ambient Intelligence and Humanized Computing, 1-28.
Kumar, A., Paul, J., & Unnithan, A. B. (2020). Masstige marketing: A review, synthesis and research agenda. Journal of Business Research, 113, 384–398.
Kushwaha, S., Bahl, S., Bagha, A. K., Parmar, K. S., Javaid, M., Haleem, A., & Singh, R. P. (2020). Significant applications of machine learning for COVID-19 pandemic. Journal of Industrial Integration and Management, 5(04), 453-479.
Lau, H. C., Nakandala, D., Zhao, L., & Lai, I. K. (2015). Using fuzzy logic approach in estimating individual guest loyalty level for international tourist hotels. International Journal of Services Technology and Management, 21(1–3), 127–145.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
Lee, H., & Cho, C.-H. (2020). Uses and gratifications of smart speakers: Modelling the effectiveness of smart speaker advertising. International Journal of Advertising, 39(7), 1150–1171.
Lei, N., & Moon, S. K. (2015). A Decision Support System for market-driven product positioning and design. Decision Support Systems, 69, 82-91.
Leminen, S., Rajahonka, M., Westerlund, M., & Wendelin, R. (2018). The future of the Internet of Things: Toward heterarchical ecosystems and service business models. Journal of Business & Industrial Marketing, 33(6), 749–767.
Lewinski, P., Den Uyl, T. M., & Butler, C. (2014). Automated facial coding: Validation of basic emotions and FACS AUs in FaceReader. Journal of Neuroscience, Psychology, and Economics, 7(4), 227.
Li, H. (2019). Special Section Introduction: Artificial Intelligence and Advertising. Journal of Advertising, 48(4), 333–337.
Li, S. (2000). The development of a hybrid intelligent system for developing marketing strategy. Decision Support Systems, 27(4), 395-409.
Li, K., & Du, T. C. (2012). Building a targeted mobile advertising system for location-based services. Decision Support Systems, 54(1), 1–8.
Li, Y., Hou, M., Liu, H., & Liu, Y. (2012). Towards a theoretical framework of strategic decision, supporting capability and information sharing under the context of Internet of Things. Information Technology and Management, 13(4), 205–216.
Li, H., & Kannan, P. K. (2014). Attributing conversions in a multichannel online marketing environment: An empirical model and a field experiment. Journal of Marketing Research, 51(1), 40-56.
Liang, W., Zhang, Y., Cao, H., Wang, B., Ding, D., Yang, X., … & Zou, J. (2023). Can large language models provide useful feedback on research papers? A large-scale empirical analysis. arXiv preprint arXiv:2310.01783.
Lin, C., & Kunnathur, A. (2019). Strategic orientations, developmental culture, and big data capability. Journal of Business Research, 105, 49–60.
Lina, L. F., & Setiyanto, A. (2021). Privacy concerns in personalized advertising effectiveness on social media. Sriwijaya International Journal of Dynamic Economics and Business, 5(2), 147- 156.
Lindsay, R. K., Feigenbaum, E. A., Buchanan, B. G., & Lederberg, J. (1980). Applications of artificial intelligence for chemical inference: The DENDRAL project. New York: McGraw-Hill.
Lim, W. M., Gunasekara, A., Pallant, J. L., Pallant, J. I., & Pechenkina, E. (2023). Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators. The International Journal of Management Education, 21(2), 100790.
Lippman, A. (1980). Movie-maps: An application of the optical videodisc to computer graphics. Acm Siggraph Computer Graphics, 14(3), 32-42.
Liu, B., Hsu, W., & Ma, Y. (1998, August). Integrating classification and association rule mining. Proceedings of the fourth international conference on knowledge discovery and data mining, 80-86.
Liu-Thompkins, Y., Maslowska, E., Ren, Y., & Kim, H. (2020). Creating, metavoicing, and propagating: A road map for understanding user roles in computational advertising. Journal of Advertising, 49(4), 394–410.
Lo, F.-Y., & Campos, N. (2018). Blending internet-of-things (IoT) solutions into relationship marketing strategies. Technological Forecasting and Social Change, 137, 10–18.
López, G., Quesada, L., & Guerrero, L. A. (2018). Alexa vs. Siri vs. Cortana vs. Google Assistant: a comparison of speech-based natural user interfaces. Advances in Human Factors and Systems Interaction: Proceedings of the AHFE 2017 International Conference on Human Factors and Systems Interaction, 241-250.
Mahdavinejad, M.S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., & Sheth A.P. (2018). Machine learning for internet of things data analysis: A survey. Digital Communications and Networks, 4(3), 161–75.
Makridakis, S. (2017). The forthcoming artificial intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46-60.
Malthouse, E. C., Hessary, Y. K., Vakeel, K. A., Burke, R., & Fudurić, M. (2019). An algorithm for allocating sponsored recommendations and content: Unifying programmatic advertising and recommender systems. Journal of Advertising, 48(4), 366–379.
Malthouse, E. C., & Li, H. (2017). Opportunities for and pitfalls of using big data in advertising research. Journal of Advertising, 46(2), 227-235.
Manole, L. (2023, January 13). Top AI trends affecting the market research industry. McKinsey.
Marchand, A., & Marx, P. (2020). Automated product recommendations with preference-based explanations. Journal of Retailing, 96(3), 328-343.
Mariani, M. M., Perez-Vega, R., & Wirtz, J. (2022). AI in marketing, consumer research and psychology: A systematic literature review and research agenda. Psychology & Marketing, 39(4), 755-776.
Mateas, M. (2002). Interactive drama, art and artificial intelligence. Carnegie Mellon University.
Matz, S. C., Segalin, C., Stillwell, D., Müller, S. R., & Bos, M. W. (2019). Predicting the personal appeal of marketing images using computational methods. Journal of Consumer Psychology, 29(3), 370–390.
McCarthy, J., Minsky, M.L., Rochester, N., & Shannon, C.E. (2006). A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955. AI Magazine, 27(4), 12.
Meiseberg, B. (2016). The effectiveness of e-tailers’ communication practices in stimulating sales of niche versus popular products. Journal of Retailing, 92(3), 319-332.
Metz, C. (2023, November 16). Chatbots may ‘hallucinate’ more often than many realize. The New York Times.
Miralles-Pechuán, L., Ponce, H., & Martínez-Villaseñor, L. (2018). A novel methodology for optimizing display advertising campaigns using genetic algorithms. Electronic Commerce Research and Applications, 27, 39–51.
Mittal, N., Saif, I., & Ammanath, B. (2022, October). Fueling AI transformation: Four key actions powering widespread value from AI, right now. Deloitte’s State of AI in the Enterprise, 5th edition report. Deloitte.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing Atari with deep reinforcement learning. arXiv:1312.5602.
Moriuchi, E. (2019). Okay, Google! An empirical study on voice assistants on consumer engagement and loyalty. Psychology & Marketing, 35(5), 489-501.
Morris, R. J. T., & Truskowski, B. J. (2003). The evolution of storage systems. IBM Systems Journal, 42(2), 205-217.
Murtagh, F., & Contreras, P. (2012). Algorithms for hierarchical clustering: An overview. WIREs Data Mining and Knowledge Discovery, 2(1), 86-97.
Mustak, M., Salminen, J., Plé, L., & Wirtz, J. (2021). Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda. Journal of Business Research, 124, 389–404.
Naimark, M. (2006). Aspen the verb: Musings on heritage and virtuality. Presence Journal, special issue on Virtual Heritage.
Netzer, O., Feldman, R., Goldenberg, J., & Fresko, M. (2012). Mine your own business: Market-structure surveillance through text mining. Marketing Science, 31(3), 521–543.
Neumann, N., Tucker, C. E., & Whitfield, T. (2019). Frontiers: How effective is third-party consumer profiling? Evidence from field studies. Marketing Science, 38(6), 918–926.
Nilashi, M., bin Ibrahim, O., Ahmadi, H., & Shahmoradi, L. (2017). An analytical method for diseases prediction using machine learning techniques. Computers & Chemical Engineering, 106, 212-223.
Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565-1567.
Ostler, J., & Kalidas, A. (2023, March 31). What large language models could mean for market research. Kantar.
Ostler, J., Munoz, L. V., & Krithivasan, D. (2023, May 25). What could generative AI mean for advertising and concept development? Kantar.
Otter, D. W., Medina, J. R., & Kalita, J. K. (2020). A survey of the usages of deep learning for natural language processing. IEEE Transactions on Neural Networks and Learning Systems, 32(2), 604-624.
Palos-Sanchez, P., Saura, J. R., & Martin-Velicia, F. (2019). A study of the effects of programmatic advertising on users’ concerns about privacy overtime. Journal of Business Research, 96, 61–72.
Pantano, E., Giglio, S., & Dennis, C. (2019). Making sense of consumers’ tweets: Sentiment outcomes for fast fashion retailers through Big Data analytics. International Journal of Retail & Distribution Management, 47(9), 915–927.
Parachuk, T. (2021, October 27). How voice-activated ads have captured the market. Voices.
Paschen, J. (2020). Investigating the emotional appeal of fake news using artificial intelligence and human contributions. Journal of Product and Brand Management, 29(2), 223-233.
Paschen, J., Wilson, M., & Ferreira, J. J. (2020). Collaborative intelligence: How human and artificial intelligence create value along the B2B sales funnel. Business Horizons, 63(3), 403-414.
Paul, J. (2019). Masstige model and measure for brand management. European Management Journal, 37(3), 299-312.
Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., Wang, G., Zou, Z., Wu, Z., He, W., Chen, F., Deng, N., Wu, S., Wang, Y., Wu, Y., Yang, Z., Ma, C., Li, G., Han, W., Li, H., … & Shi, L. (2019). Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature, 572, 106–111.
Perkins, M. (2023). Academic integrity considerations of AI large language models in the post-pandemic era: ChatGPT and beyond. Journal of University Teaching & Learning Practice, 20(2).
Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia, 4(2), 1883.
Phillips, A. (2021, April 1). A history and timeline of big data. TechTarget.
Pitt, C. S., Mulvey, M. S., & Kietzmann, J. (2018). Quantitative insights from online qualitative data: An example from the health care sector. Psychology & Marketing, 35(12), 1010-1017.
Poria, S., Cambria, E., Winterstein, G., & Huang, G. B. (2014). Sentic patterns: Dependency based-rules for concept-level sentiment analysis. Knowledge-Based Systems, 69, 45-63.
Press, G. (2020, April 27). 12 AI milestones: 4. MYCIN, an expert system for infectious disease therapy. Forbes.
Qin, X., & Jiang, Z. (2019). The impact of AI on the advertising process: The Chinese experience. Journal of Advertising, 48(4), 338–346.
Qualtrics. (2018). How AI will reinvent the market research industry. Qualtrics.
Quijano-Sanchez, L., & Liberatore, F. (2017). The BIG CHASE: A decision support system for client acquisition applied to financial networks. Decision Support Systems, 98, 49-58.
Ravi, K., & Ravi, V. (2015). A survey on opinion mining and sentiment analysis: Tasks, approaches and applications. Knowledge-Based Systems, 89, 14–46.
Rawat, B., Mehra, N., Bist, A. S., Yusup, M., & Sanjaya, Y. P. A. (2022). Quantum computing and AI: Impacts & possibilities. ADI Journal on Recent Innovation, 3(2), 202-207.
Ray, P. P. (2023). ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 3, 121–154.
Reisenbichler, M., Reutterer, T., & Schweidel, D. A. (2023). Applying large language models to sponsored search advertising. MSI Working Paper Series. MSI.
Reisenbichler, M., Reutterer, T., Schweidel, D. A., & Dan, D. (2022). Frontiers: Supporting content marketing with natural language generation. Marketing Science, 41(3), 441–452.
Rialti, R., Marzi, G., Ciappei, C., & Busso, D. (2019). Big data and dynamic capabilities: A bibliometric analysis and systematic literature review. Management Decision</em>, 57(8), 2052–2068.
Riikkinen, M., Saarijärvi, H., Sarlin, P., & Lähteenmäki, I. (2018). Using artificial intelligence to create value in insurance. International Journal of Bank Marketing, 36(6), 1145-1168.
Rodgers, S. (2021). Themed issue introduction: Promises and perils of artificial intelligence and advertising. Journal of Advertising, 50(1), 1-10.
Roy, A., Huh, J., Pfeuffer, A., & Srivastava, J. (2017). Development of trust scores in social media (TSM) algorithm and application to advertising practice and research. Journal of Advertising, 46(2), 269–282.
Ruden, J. (2023, October). Redefining what’s possible in paid search performance using AI. WARC.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by backpropagating
errors. Nature, 323, 533-536.
Russell, S. (2020). Human compatible: Artificial intelligence and the problem of control. Penguin Books.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach (3rd ed.). Pearson Education.
Rust, R. T. (2020). The future of marketing. International Journal of Research in Marketing, 37(1), 15-26.
Ryan-Mosley, T., Heikkilä, M., & Yang, Z. (2024, January 5). What’s next for AI regulation in 2024? MIT Technology Review.
Samuel, A., White, G. R. T., Thomas, R., & Jones, P. (2021). Programmatic advertising: An exegesis of consumer concerns. Computers in Human Behavior, 116, 106657.
Sarker, I. H. (2021a). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2, 160.
Sarker, I. H. (2021b). Deep learning: a comprehensive overview on techniques, taxonomy,
applications and research directions. SN Computer Science, 2, 420.
Sarker, I. H. (2021c). Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective. SN Computer Science, 2, 377.
Sarker, I. H. (2021d). Deep cybersecurity: a comprehensive overview from neural network and deep learning perspective. SN Computer Science, 2, 154.
Sejnowski, T. J., & Rosenberg, C. R. (1988). NETtalk: A parallel network that learns to read aloud. In J. A. Anderson, & E. Rosenfeld (Eds.), Neurocomputing: foundations of research (pp. 661-672). MIT Press.
Shahrabi, J., Hadavandi, E., & Asadi, S. (2013). Developing a hybrid intelligent model for forecasting problems: Case study of tourism demand time series. Knowledge-Based Systems, 43, 112-122.
Shumanov, M., Cooper, H., & Ewing, M. (2022). Using AI predicted personality to enhance advertising effectiveness. European Journal of Marketing, 56(6), 1590-1609.
Sjödin, D. R., Parida, V., Leksell, M., & Petrovic, A. (2018). Smart factory implementation and process innovation. Research-Technology Management, 61(5), 22-31.
Silva, S. C., Duarte, P. & Sundetova, A. (2020), Multichannel versus omnichannel: A pricesegmented comparison from the fashion industry. International Journal of Retail and Distribution Management, 48(4), 417-430.
Silva, S. C., Martins, C. C., & de Sousa, J. M. (2018). Omnichannel approach: Factors affecting consumer acceptance. Journal of Marketing Channels, 25(1-2), 73-84.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529, 484-489.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556.
Sohail, S. S., Farhat, F., Himeur, Y., Nadeem, M., Madsen, D. Ø., Singh, Y., Atalla, S., & Mansoor, W. (2023). Decoding ChatGPT: A taxonomy of existing research, current challenges, and possible future directions. Journal of King Saud University—Computer and Information Sciences, 35(8), 101675.
Spatharioti, S. E., Rothschild, D. M., Goldstein, D. G., & Hofman, J. M. (2023). Comparing traditional and LLM-based search for consumer choice: A randomized experiment. arXiv:2307.03744.
Spitale, G., Biller-Andorno, N., & Germani, F. (2023). AI model GPT-3 (dis)informs us better than humans. arXiv:2301.11924.
Stam, A. (2023, November 1). How AI is expected to reshape the ad industry. AdAge.
Stokel-Walker, C., & Van Noorden, R. (2023, February). What ChatGPT and generative AI mean for science. Nature, 614, 214-216.
Stone, M., Aravopoulou, E., Ekinci, Y., Evans, G., Hobbs, M., Labib, A., Laughlin, P., Machtynger, J., & Machtynger, L. (2020). Artificial intelligence (AI) in strategic marketing decision-making: A research agenda. The Bottom Line, 33(2), 183-200.
Sun, S., Cegielski, C. G., Jia, L., & Hall, D. J. (2016). Understanding the factors affecting the organizational adoption of big data. Journal of Computer Information Systems, 58(3), 193–203.
Syam, N., & Sharma, A. (2018). Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice. Industrial Marketing Management, 69, 135-146.
Synaptiq. (2020, May 17). From the blog: Artificial intelligence, a brief history. Synaptiq.
Tang, C., & Guo, L. (2015). Digging for gold with a simple tool: Validating text mining in studying electronic word-of-mouth (eWOM) communication. Marketing Letters, 26, 67–80.
Tegmark, M. (2018). Life 3.0: Being human in the age of artificial intelligence. Penguin Books.
Terwiesch, C., & Ulrich, K. (2023, September 9). M.B.A. students vs. AI: Who comes up with
more innovative ideas? The Wall Street Journal.
Tirunillai, S., & Tellis, G. J. (2014). Mining marketing meaning from online chatter: Strategic brand analysis of big data using latent Dirichlet allocation. Journal of Marketing Research, 51(4), 463–479.
Tomašev, N., Cornebise, J., Hutter, F., Mohamed, S., Picciariello, A., Connelly, B., Belgrave, D. C. M., Ezer, D., van der Haert, F. C., Mugisha, F., Abila, G., Arai, H., Almiraat, H., Proskurnia, J., Snyder, K., Otake-Matsuura, M., Othman, M., Glasmachers, T., de Wever, W., Teh, Y. W., …, & Clopath, C. (2020). AI for social good: unlocking the opportunity for positive impact. Nature Communications, 11, 2468.
Tong, S., Luo, X., & Xu, B. (2020). Personalized mobile marketing strategies. Journal of the Academy of Marketing Science, 48, 64-78.
Tong, Y., & Zhang, L. (2023). Discovering the next decade’s synthetic biology research trends with ChatGPT. Synthetic and Systems Biotechnology, 8(2): 220-223.
Turing, A. M. (1950). I.—computing machinery and intelligence. Mind, 59(236), 433–460.
Vakratsas, D., & Wang, X. (2020). Artificial intelligence in advertising creativity. Journal of Advertising, 50(1), 39–51.
Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134-1142.
Valter, P., Lindgren, P., & Prasad, R. (2018). Advanced business model innovation supported by artificial intelligence and deep learning. Wireless Personal Communications, 100, 97-111.
van Noort, G., Himelboim, I., Martin, J., & Collinger, T. (2020). Introducing a model of automated brand-generated content in an era of computational advertising. Journal of Advertising, 49(4), 411–427.
van Pinxteren, M. M. E., Wetzels, R. W. H., Rüger, J., Pluymaekers, M., & Wetzels, M. (2019). Trust in humanoid robots: Implications for services marketing. Journal of Services Marketing, 33(4), 507–518.
Vlačić, B., Corbo, L., Silva, S. C., & Dabić, M. (2021). The evolving role of artificial intelligence in marketing: A review and research agenda. Journal of Business Research, 128, 187–203.
Vranica, S. (2023, June 19). How AI has the advertising business excited—and worried. The Wall Street Journal.
Wang, H., & Hong, W. (2006). Managing customer profitability in a competitive market by continuous data mining. Industrial Marketing Management, 35(6), 715–723.
WARC. (2023, November). The marketer’s toolkit 2024. WARC.
Wei, C., & Chiu, I. (2002). Turning telecommunications call details to churn prediction: a data mining approach. Expert Systems with Applications, 23(2), 103-112.
Widjaya, I. (2023). The rise of voice search: How it’s changing the digital marketing landscape. Noobpreneur.
Wirth, N. (2018). Hello marketing, what can artificial intelligence help you with? International Journal of Market Research, 60(5), 435-438.
Wirtz, J., Patterson, P. G., Kunz, W. H., Gruber, T., Lu, V. N., Paluch, S., & Martins, A. (2018). Brave new world: service robots in the frontline. Journal of Service Management, 29(5), 907-931.
World Health Organization. (2024). WHO.
Wu, C. H., Ho, G. T. S., Lam, C. H. Y., & Ip, W. H. (2015). Franchising decision support system for formulating a center positioning strategy. Industrial Management and Data Systems, 115(5), 853-882.
Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., & Zhu, J. (2019). Explainable AI: A brief survey on history, research areas, approaches and challenges. In J. Tang, M. Y. Kan, D. Zhao, S. Li, & H. Zan (Eds.), Natural Language Processing and Chinese Computing. NLPCC 2019. Lecture Notes in Computer Science, 11839 (pp. 563-574). Springer International Publishing.
Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645-678.
Yu, C. (2020). Humanlike robots as employees in the hotel industry: Thematic content analysis of online reviews. Journal of Hospitality Marketing & Management, 29(1), 22–38.
Zador, A. M. (2019). A critique of pure learning and what artificial neural networks can learn from animal brains. Nature Communications, 10, 3770.
Zhang, H., Rao, H., & Feng, J. (2018). Product innovation based on online review data mining: A case study of Huawei phones. Electronic Commerce Research, 18, 3–22.
Zhu, K. (2023, August 3). The state of state AI laws: 2023. Epic.org.
Zhu, X. (2005). Semi-supervised learning literature survey. University of Wisconsin-Madison Department of Computer Sciences.
Zimand-Sheiner, D., & Earon, A. (2019). Disruptions of account planning in the digital age. Marketing Intelligence & Planning, 37(2), 126-139.